Ibn KHaldoun-Tiaret University - Department of Physics

Answer Catch up exam Maths 2 lasts 1:30 minutes 02/06/2024

Name:
Group:..............

Exercise 1 (9 pts) Part I Choose the right answer. Let

$$
\begin{aligned}
I & =\int_{1}^{e} \frac{1}{x} \ln \frac{1}{x} d x, \quad J=\int \frac{1}{x^{2}+2 x-3} d x, K=\int x \sin x d x \\
L & =\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x+\cos x} d x \text { and } M=\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sin x+\cos x} d x
\end{aligned}
$$

1- The value of I is

$$
X I=-\frac{1}{2} \quad I=\frac{1}{2} \quad . \quad I=e \quad . \quad I=1
$$

2- The integral J is

$$
J=\ln \left|x^{2}+2 x+3\right|+C \quad . \quad J=\ln (x+1)-\ln (x+3)+C \quad \triangle \quad J=\frac{1}{4} \ln \left|\frac{x-1}{x+3}\right|+C
$$

3- The integral K is

$$
X \quad \mathbf{K}=\sin x-x \cos x+C \quad . \quad \mathbf{K}=\frac{1}{2} x^{2} \cos x+C \quad . \quad K=\sin x+x \cos x+C
$$

4. The value of $L+M$ and $L-M$ are

$$
\left\{\begin{array} { l }
{ L + M = 0 } \\
{ L - M = \frac { \pi } { 2 } }
\end{array} \quad \text { X] } \quad \left\{\begin{array}{c}
L+M=\frac{\pi}{2} \\
L-M=0
\end{array} .\left\{\begin{array}{l}
L+M=\frac{\pi}{2} \\
L-M=\frac{\pi}{2}
\end{array} .\left\{\begin{array}{c}
L+M=\frac{\pi}{2} \\
L-M=-\frac{\pi}{2}
\end{array}\right.\right.\right.\right.
$$

5. The value of K and L are

$$
X\left\{\begin{array} { c }
{ L = \frac { \pi } { 4 } } \\
{ M = \frac { \pi } { 4 } }
\end{array} \quad \cdot \left\{\begin{array}{c}
L=-\frac{\pi}{4} \\
M=\frac{\pi}{4}
\end{array} \quad .\left\{\begin{array}{c}
L=0 \\
M=\frac{\pi}{2}
\end{array} \quad .\left\{\begin{array}{c}
L=\frac{\pi}{2} \\
M=-\frac{\pi}{2}
\end{array}\right.\right.\right.\right.
$$

Part II Let the following diferentiabl equations

$$
\begin{align*}
y^{\prime}+x y & =x^{2}+1 \tag{1}\\
2 y^{\prime \prime}-3 y^{\prime}+y & =0 \tag{2}
\end{align*}
$$

6. The homogenous somutions of 1 are

$$
y_{H}=C e^{-x} \quad . \quad y_{H}=C e^{x} \quad \square \quad y_{H}=C e^{-\frac{1}{2} x^{2}} \quad . \quad y_{H}=C e^{\frac{1}{2} x^{2}}
$$

7- The partucular somution of 1 is

$$
y_{p}=1 \quad \text { X] } \quad y_{p}=x \quad . y_{p}=x e^{x} \quad . y_{p}=-x
$$

8- The homogenous solutions of 2 are
XX $y_{H}=C_{1} e^{x}+C_{2} e^{\frac{1}{2} x} \quad . \quad y_{H}=C_{1} e^{x}+C_{2} e^{-x} \quad . y_{H}=C_{1} e^{x}+C_{2} e^{-\frac{1}{2} x}$
9. The limited developement of $f(x)=\left(e^{-x}+x\right)(x+\ln (1+x))$ in order 2 is
$\square \quad f(x)=2 x-\frac{1}{2} x^{2}+x^{2} \varepsilon(x) \quad . \quad f(x)=2 x+\frac{1}{2} x^{2}+x^{2} \varepsilon(x) \quad . \quad f(x)=x-\frac{1}{2} x^{2}+x^{2} \varepsilon(x)$
Exercise 26 pts Consider the following map $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ and the matrix P defined by

$$
f(x, y)=(3 x-2 y, x) \text { and } P=\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)
$$

1. The matrix $A=M_{B}(f)$ representing f with respect to the standard bases B of \mathbb{R}^{2} is

$$
\text { 【 } \quad A=\left(\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right) \quad . \quad A=\left(\begin{array}{ll}
3 & 2 \\
1 & 0
\end{array}\right) \quad . \quad A=\left(\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right)
$$

2- The inverse matrix of P is

$$
\mathbb{X} \quad P^{-1}=\left(\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right) \quad . P^{-1}=\left(\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right) \quad . P^{-1}=\left(\begin{array}{cc}
-1 & 2 \\
1 & 1
\end{array}\right)
$$

3- The result of $A^{2}-3 A$ is

$$
A^{2}-3 A=2 I_{2} \quad . \quad A^{2}-3 A=I_{2} \quad \quad X \quad A^{2}-3 A=-2 I_{2}
$$

4. The eigenvalues of A are
. $\lambda_{1}=1$ or $\lambda_{2}=-2$
[X] $\quad \lambda_{1}=1$ or $\lambda_{2}=2$
$\lambda_{1}=-1$ or $\lambda_{2}=2$
5. The result of $P^{-1} A P$ is
[X] $P^{-1} A P=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right) \quad . \quad P^{-1} A P=\left(\begin{array}{cc}1 & 0 \\ 0 & -2\end{array}\right) \quad . \quad P^{-1} A P=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$
6. For all $n \geq 1$, we have

$$
\cdot A^{n}=\left(\begin{array}{cc}
2 \times 2^{n}-1 & 2-2 \times 2^{n} \\
2^{n}-1 & 2-2^{n}
\end{array}\right) \quad \text { X } A^{n}=\left(\begin{array}{cc}
2 \times 2^{n}+1 & 2-2 \times 2^{n} \\
2^{n}-1 & 2-2^{n}
\end{array}\right) . A^{n}=\left(\begin{array}{cc}
3^{n} & -2^{n} \\
1 & 0
\end{array}\right)
$$

Exercise 35 pts Determine the solution of the following differential equation

$$
\left\{\begin{array}{c}
x y^{\prime}+y=x y^{3} \tag{3}\\
y(1)=\sqrt{3}
\end{array}\right.
$$

Solution 4 This is a Bernoulli differentiable equation ??, where $\alpha=3$. We first divided the equation throught by y^{3}, thereby expressing it in the equivalent form

$$
\begin{equation*}
x \frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=x \ldots \ldots \ldots 1 p t s \tag{4}
\end{equation*}
$$

by using the change variable $z=y^{1-\frac{1}{2}}$, then $z^{\prime}=\frac{1}{2} \frac{y^{\prime}}{\sqrt{y}}$ and equation 4 transforms into

$$
\begin{equation*}
x z^{\prime}-2 z=-2 x \ldots \ldots .1 p t s \tag{5}
\end{equation*}
$$

the solution of linear differential equation of 1 st order 5 is

$$
z=C x^{2}+2 x \ldots \ldots \ldots 1 p t s
$$

Thus we obtain the solutions of ?? in then form

$$
y=\frac{1}{\sqrt{C x^{2}+2 x}} \cdots \ldots .1 p t s
$$

since $y(1)=\sqrt{3}$, we have

$$
\frac{1}{\sqrt{C+2}}=\sqrt{3} \Longleftrightarrow C=-\frac{5}{3}
$$

finaly the solution of is

$$
y=\frac{1}{\sqrt{\frac{-5}{3} x^{2}+2 x}} \ldots \ldots \ldots \mathbf{1 p t s}
$$

